Algebraic Cycles

We first fix some notation. K is a field (possibly not alg. closed), and SurProju denotes the category of smooth projective varieties over k. A variety here is taken to be a separated reduced scheme of finite type. In particular we do not assume irreducible.

So now let X be in SmProj_k. The group of cycles $Z(X)$ is the free abeliam group generated by irreducible subvarieties of X. An algebraic cycle is then a formal sum of such irreducible subvarieties, and if each summand has the same codimension i, we say the cycle has codimension i. The subgroup of all such cycles is denoted $Z^{\mathcal{L}}(X)$. Clearly we have:

 $Z(x) = \bigoplus_i Z^i(x)$

 $Ex:$

1) $Z'(x)$ is the group of divisors $Div(x)$ 2) $Z^{\text{dim} \times}$ (x) are finite formal sums of points. We can assign a degree to a point pex by [k(p):k] = deg(p), which gives a $\mathbb Z$ -linear function $\mathbb Z^{dimX}(X) \longrightarrow \mathbb Z$ by Σ napa \mapsto Σ na deg(pa). If k= \tilde{k} , then deg(pa)=1 (See Prop. 1.21 in 3264 + All That). 3) If YCX is a subscheme, we can define an effective cycle in $Z(x)$. Denote by $Y_1,...,Y_s$ the irreducible components of Y, and l_i = length \mathcal{O}_y, y_i . Then $\langle \gamma \rangle$ = $\Sigma \lambda_i$ Y_i is what we want

Some things you can do:

- Products: $Z(X) \times Z(Y) \longrightarrow Z(X \times Y)$ by $(U, W) \longmapsto V \times W$. I do not think this is injective or surjective almost ever.
- · Push forward: If $f: X \rightarrow Y$ is a proper morphism of k-varieties, and ZcX is an irreducible subvariety, set deg $(z/f(z))$ to be $[k(z):k(f(z)]$ if dimZ -dimf(z) and O otherwise. Then the assignment f_* (Z) = deg (Z/f(Z)) $f(z)$ extends linearly to a homomorphism f_* : Z(X) = Z(Y) (which is degree zero w.r.t. the grading).
- Intersection: If two subvarieties V and W in X intersect transversally alony Z, then we can assign them an intersection multiplicity

 $i(V_{i}w_{j}z) = \sum_{r=0} (1)^{j} |e_{j}w_{j}h|_{\mathcal{O}_{V\cap W_{j},z}} (\text{Tor}_{r}^{O_{X_{j},z}}(\mathcal{O}_{V_{j},z},\mathcal{O}_{w_{j},z}))$

Then the intersection product is V·W = $\sum \limits_{\alpha} i(V\cdot W; Z_{\alpha}) Z_{\alpha}$, where Za are the subvarieties making up
VAW Note the higher Tor's are zero in the Cohen-Macaulay case, so the other terms are "correction terms".

. Pull back: Let $f: X \rightarrow Y$ be a morphism in SmProj_n and let ZcY be a subvariety. The graph \varGamma_f of f is a subvariety of XxY. If it meets XxZ transversally, we set f^*z = $P_{x, *}$ ($\Gamma_f \cdot$ (XxZ)). If f is flat, then $f^*(\mathsf{Z})$ = $f^{-1}(\mathsf{Z})$, and this definition can be extended linearly to cycles.

• Correspondences: A correspondence from X to Y is a cycle in XxY. Given a correspondence A, it acts on cycles in X via $A(t) = P_{y,x} (A \cdot (Tx)) \in Z^{i+t-d}(y)$ where $TeZ^t(x)$, $A \in Z^t(x \times y)$, d=dimX. Note t-d is called the degree of A

Not all of these are always defined, especially if the cycles represent singular varieties. The idea is
Then to coarsen Z(X) by some eguivalence relation, so that by-choosing-representatives the above a some equivalence relation, so that by choosing representatives the above are always defined on equivalence classes

 $\overline{\rm Def}$: An equivalence relation \sim on Z(X) is called adepuate if when restricted to Sm $\mathcal P$ oj_a i*t* satisfies 1) compatible with the grading and addition, 2) if $Z\sim O$ on X, then $ZxY\sim O$ in $Z(XxY)$ for all Y, 3) if $Z_1 \sim 0$ and $Z_1 \cdot Z_2$ is defined, then $Z_1 \cdot Z_2 \sim 0$, 4) if $Z\sim O$ on $X^{\times}V$, then $p_{\mathsf{x},\mathsf{w}}(Z)\sim O$ on X 5) given $Z, w_i, ..., w_s \in Z(x)$, there is $Z' \sim Z$ such that $Z' \cdot W_i$ is defined for each i.

Having such an equivalence relation \sim , we set $C_{\infty}(x)$ = $\mathsf{Z}(x)/\mathsf{Z}_{\infty}(x)$, where $\mathsf{Z}_{\infty}(x)$ consists of cycles equivalent to zero. These are of course chosen so that the following lemma holds:

 $Lemma: For \sim an$ adequate equivalence relation, $X \in S$ m $Proj$ u: 1) $C_n(x)$ is a ring under intersection, 2) for any $f: X \to Y$ in SmProj_u, the maps $f^* \circ f_*$ induce homomorphisms $f_*: C_\infty(x) \to C_\infty(y)$,
and $f^*: C_\infty(y) \to C_\infty(x)$, the latter a morphism of graded rings, 3) a correspondence of degree r induces $A_{\mathcal{F}}$ $C_{\sim}^{i}(x) \rightarrow C_{\sim}^{i+d}(y)$, and equivalent correspondences induce the same A

We will now discuss various important equivalence relations.

This is a generalization of the classical linear equivalence of divisors. Let YCX be an irreducible subvariety of codimension i-1. For a function fe $K(Y)^{x}$, then div(f) is a cycle of codimension i, and we say by definition $Z^i_{ raf}$ (x) is generated by such cycles. Explicitly, a codimension i cycle $Z \sim_{net} 0$ iff there is a finite collection of pairs (Yx, fx) such that $Z = \sum div (f_a)$

An equivalent but perhaps more geometric definition is as follows. Two cycles Vo and V, are said to be rationally equivalent if there is ^a cycle ^W ou P'xx not contained in any fiber t3xX such that wn to xx Wn E43xx Ao Ai Pictorally

Fulton actually proves this without property 5 (I guess be doesn't think its right?). His construction of the intersection product is actually slightly better.

Algebraic Equivalence

Supposing that X is smooth projective, we can replace \mathbb{P}^1 by any smooth irreducible curve $\mathcal C$ in the second definition of rational equivalence Doing so we arrive at algebraic equivalence

As an example of how this is coarser, note any rationally equivalent cycles ave
claimically equivalent for taking $\mathcal{L}=\mathbb{P}^1$ For the equivance if F is an alliatio curve algebraically equivalent by taking $\textsf{C=P}$. For the converse, if E is an elliptic curve and a,b are distinet points, then Z = a-b α rat \circ as g (E)=1. However, taking C=E
and W = A c E x E , we see that Z \sim alo O . and $W = \Delta c$ $E \times E$, we see that $Z \sim dq$

Smash Nilpotent Lauraience Again XE SmProj_k, For a variety X and a cycle Z on X, we set X^n = $X^{x...x}X$ and $Z^n = Z^{x \cdots x}Z$

 $\frac{1}{1}$ $Def: Z \sim_{\mathcal{O}} \mathcal{O}$ if and only if $Z^{n} \sim_{rat} \mathcal{O}$ on X^{n} for some positive integer n.

PropiSmash Nilpotent equivalence is an adequate equivalence relation In particular $Z_{\bullet}^{\prime}(x)$ = { Ze Z'(x)| Z \sim @ O { is a subgroup of Z'(x).

The proof of this follows from the fact that rational equivalence is adequate. An important comparison result is the following

 $\boxed{\text{Thm (Voisin - Voevodsky):}$ $Z_{alg}^{i}(x)_{\text{Q}} \subset Z_{\text{Q}}^{i}(x)_{\text{Q}}}$.

We might prove this later?

Homological Equivalence

Here, let F be a field of characteristic zero, and GrVect_F be the category of graded f .d. vector spaces over F .

 $\overline{\text{Def}}\colon$ A Weil cohomology theory is a functor $H\colon \mathbb S\text{mProj}_\mathbf{k}$ or vector which satisfies: 1) There is a graded super-commutative cup product $\cup: H(x) \times H(x) \longrightarrow H(x)$, 2) Poincare duality (trace iso: $Tr : H^{2d}(x) \cong F$, and perfect pairing $H^{i} \times H^{2d-i} \to H^{2d} \cong F$), 3) Künneth *formula holds:* H(X)@H(Y) - $\frac{P*^* \otimes PY^*}{P}$ H(XxY) is a graded isomorphism, 4) Cycle maps: $c\ell_x$ $CH^i(x) \rightarrow H^{2i}(x)$ which satisfy: $f^* \circ c l_y = c l_x \circ f^*$ and $f_* \circ c l_x = c l_y \circ f_x$ for $f' \times \neg y$ in Surfreju \cdot $cl_{x}(\alpha \cdot \beta)$ = $cl_{x}(\alpha)$ \cup $cl_{x}(\beta)$, where \cdot is intersection product. Trodp = deg for points p. As notation, write $A^{\iota}(X)$ = $\text{Im}(cl_{X})$ = $H^{2i}_{alg}(X)$. . Weak Lefschetz: if $H \xrightarrow{c} X$ is a smooth hyperplane section, then $H^i(X) \xrightarrow{0} H^i(H)$ is an isomorphism if $i < d$ -1, and injective if $i = d$ -1, and H^{1} ard Lefschetz: L(x) = x clx(H) induces isomorphisms $L^{d-i}: H^{d-i}(X) \xrightarrow{\sim} H^{d+i} (X)$ for $0 \leq i \leq d$.

Some examples are of course:

\n1) If
$$
\text{char}(X) = \text{char}(X)
$$

\n2) Let $\text{Gamma}(X \leq x)$

\n2) Let $\text{Gamma}(X \leq x)$

\n3) $\text{Cylshimic de Rlem: High(Xa, 1)$

\n4) $\text{Lyl}(X = \text{Ril}(X) = \text{H}^{2}(X \leq x, 2^{2}/2)$

\n5) $\text{Lyl}(X = \text{Ril}(X \leq x)$

\n6) $\text{Lyl}(X = \text{Ril}(X \leq x)$

\n7) $\text{Cylshimic de Rlemis (Hil(X, 2/3) = [Hil(1)(Xz, 2/3)]$

\n8) $\text{Cylshimic de Rlemis (Hil(X, 2/3) = [Hil(1)(Xz, 2/3)]$

\n9) $\text{Cylshimic de Rlemis (Hil(1) = [Hil(1)(Xz, 2/3)]$

\n10) $\text{Cylshimic de Rlemis (Hil(1) = [Hil(1)(Xz, 2/3)]$

\n11) $\text{Lyl}(X = \text{Ril}(X) = \$

Supeluse (Immkly):	11 $k \cdot \overline{k}$, \overline{k} , \overline
--------------------	---